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Abstract 

It is shown that, given any static solution of the Einstein vacuum equations, a eorre- 
spoaSing family of static vacuum solutions of the Brans-Dicke equations can be written 
down by inspection. Spherically and axially symmetric fields are considered explicitly. 
It is demonstrated how some solutions of the Brans-Dicke equations may be obtained 
without having to solve any field equations explicitly at all. 

1. Introduction 

In Einste in ' s  theory  o f  grav i ta t ion  the Einstein tensor  

Gkl := �89 R - Rkt (I .  1) 
whereof 

R~  := 2Fmkt,,,zl + 2F"k tm/"~ j ,  (1.2) 

is the Ricci tensor  o f  a four -d imens iona l  no rma l -hype rbo l i c  R iemann  space 
V4, is identif ied di rec t ly  with the tensor  Tk~ which character ises  the distr i-  
bu t ion  o f  stresses, m o m e n t u m  and energy. In o ther  words  the field equat ions  
o f  the theory  are  

Gkl = 87rKTkz (1.3) 

where ,~: is a cons tan t ;  and  it is an immedia t e  consequence  o f  these tha t  

TkZ;z = 0 (1.4) 

F r o m  a fo rmal  po in t  of  view the scalar- tensor  theory  o f  Brans & Dicke  
(1961) modif ies  (1.3) in the fol lowing way:  (i) the coupl ing  cons tan t  x 
becomes  a var iable  coupl ing pa ramen te r  ~-1 ;  (ii) the ene rgy -momen tum 
tensor  o f  the scalar  field ~ is inc luded in Tk~, so tha t  this field also appears  as 

t In the 'equations' A : = B, A = : B the colon serves to emphasise that these are defining 
relations for A and B respectively. 
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a source of the gravitational field; (iii) further terms are added on the right 
so as to ensure that (1.4) continues to hold. Explicitly, (1.3) is replaced byt  

ak, = -1Tk, + _ + [ ]  4') (1.5) 

where (o is a constant, and the speed of light has been taken as unity. In 
addition there is a field equation for q~: 

(3 + 2(o) []  ~ -- 87rTk k (1.6) 

(1.5) and (1.6) can be derived from a variational principle but this may be 
left aside here. 

Now, the problem of obtaining exact solutions of these equations is 
evidently a formidable task. One is most likely to succeed under specialised 
circumstances, and the case of static vacuum fields at once suggests itself. 
Even then the explicit equations, as exemplified by equations (3.8-12) of 
Brans (1962) for the spherically symmetric case, are quite complicated. It 
would therefore be helpful to have some means of obtaining solutions--even 
if not the most general--by inspection from known solutions of simpler 
field equations (relating to the same circumstances). I show here that this 
may indeed be done. 

To describe the main result obtained, let the indices a, b, c take values 
only from the range 1 to 3. The metric g~ will be called static if 

gkl,4 = 0 and go4 = 0 (1.7) 

and, granted (1.7), write gkz--(ga,,e2~), in an obvious notation. Then I 
prove~ in Section 2 the following: 

Theorem:  

If  (g,b, e 2~) is a static vacuum solution of Einstein's equations then 

gkz = (e2g~g.b, e2W~), ~ = e; r (1.8) 

is a static vacuum solution of the Brans-Dicke equation provided 

+ ~7 + ~ = 1 and 7) 2 + ~/~ + (�89 + 1) ~2 = 1 (I .9) 

Evidently (1.8) in fact represents a o n e -p a ra me te r  f a m i l y  of solutions. In 
particular, under conditions of spherical symmetry this coincides with that 
given by Brans (1962); so that the latter is generated very simply by the 
well-known Schwarzschild metric (Section 3a). The general result quoted 
above may likewise be used in the context of  the class of  axially symmetric 
solutions of Weyl (Section 3b), and of other known solutions. In particular 
one may start with a galilean metric and still arrive at non-trivial solutions 

t The apparent reversal of sign of the left-hand member of (1.5)--as compared with 
equation (11) of Brans & Dicke (1961)--occurs because these authors write -R~z where 
Rkl has been written in (1.2). 

The work is closely related to Buchdahl (1959). However, superficially at any rate, 
the field equations there differ from those considered now, and the final result is attained 
by a different method. 
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of  the Brans-Dicke  equations;  yet in this process one never needs to solve 
(in the explicit sense) any field equations at all. 

2. Proof of  the Theorem 

(a) Writing 4, =:  e ~ the equations under consideration reduce to 

C_&~ = 0;k~ + (co + 1) 0;k 0;, - �89 0;,, 0'"' (2.1) 

[ ]  0 + 0:,,, 0;'" = 0 (2.2) 

where it has been assumed that 2oJ + 3 =a 0. Let gk~ now be written in the form 

gkl =: (eZPg,~, e 2q) (2.3) 

The g,b may be looked upon as the components  of  the metric tensor  of  a 
(negative definite) three-dimensional Riemann space V3. Covariant  dif- 
ferentiat ion in this V3 will be indicated by indices preceded by a colon;  and 
its Ricci tensor, scalar curvature,  and so on will be distinguished by bars. 
Then  (Buchdahl,  1954) 

Gab = G,,b --P:,,b --q:,~, + P:,,P:b + P:,,q:b + P:bq:~ 

- -  q:,,q:b + g,,b(P:/ + q:c * + q:cq:O (2.4) 
C L" :C G44 = e2q-2P(-'}zl{ -I- 2p:c , P : c P  ) (2.5)  

Further ,  

0;. b = 0:. b - p : .  0:~ - P : b  0:~ + g~oP:~ 0:c (2,6) 

0 ; 4  4 = eiq-2pq: c 0 :c (2.7) 

(b) Set 
p -  q = o = ( 2 . 8 )  

where ~:, r/, ~ are constants. Then,  using (2.6) and (2.7), equat ion (2.2) 
becomes 

~[~b:f + (~ -1- ~ + ~) ~b:c ~b :c] = 0 (2.9) 

By the same token, drawing also upon (2.5), the (4,4)-member of  the 
equations (2.1) becomes 

�89 = -2~:~b:/+ (~s - ~2 _ �89 ~2)~:~:~ (2.10) 

Now,  let the space whose metric tensor is (~b ,e  2~) be Ricci-flat, i.e. 
GkL = 0. Set t ingp = 0, q = ~b in (2.4) and (2.5), it follows that  

G~b = ~:~b + ~b:~ ~':b -- g~b(~b:/+ ~b:~ :c) (2.11) 
a n d  

F{ = 0 (2.12) 

By transvection of  (2.11) with ~b  one concludes that 

~b:cc + ~:~b:c = 0 (2.13) 
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Gran ted  that  ~ r 0 and that  ~ is not constant ,  consistency of  (2.9) with 
(2.13) requires that  

~ : + ~ + ~ = 1  (2.14) 

Further,  consistency of  (2.10) with (2.11) and (2.13) requires that  

r/~ - 4:2 + 2~: - �89 2 -- 0 (2.15) 

which, because of  (2.14), may be rewritten in the form 

T/2 -{- ~7~ -[- (1 ~- 160) ~2 = I (2.16) 

One still has to consider the remaining equat ions of  (2.t). Both members  
of  the (k ,4) -components  Vanish identically because the field is static. As 
regards the (a, b) -components ,  one need only insert (2.8), (2.11) and (2.13) 
in (2.4) on the left and (2.6) on the right to conclude that  the equat ion 

(~ -}- 7"] -]- g -- 1)~t:a b - -  [~2 _~_ 2~'~ -- ,~2 _~ 2 ~  -- (03 -t- ]) r + 1] ~:a stb:b 

+ 4 . , , ( ~ : r  - ,7 ~ - ~ o , r  ~ - ~: - , )  6 : c  q,  :~ = 0 

needs to be satisfied. However ,  on account  of  (2.14) and (2,16) its left-hand 
m e m b e r  vanishes identically. This means that  (2.1) and (2.2) are all satisfied, 
and the theorem stated in Section ! is thus proved.  

3. Spherical a~zd Axial Symmetry 

(a) Under  condit ions of  spherical symmet ry  the solution of  Einstein 's  
vacuum equat ion is the Schwarzschild exterior metric. In canonical  co- 
ordinates  this is 

ds 2 = - - ( 1  - -  4b/rl) -1 dq 2 - rl 2 ds + (1 - 4b/q)dt  2 (3.1) 

where d ~ 2 =  d ~ 2 +  sin2~d/32 and b is a constant.  I f  the coordinates  are 
isotropic one has equivalently 

ds2 = - ( 1  +b/r)4(dr2 + r 2 d ~ 2 ) + ( 1  - b / r ) 2 ( l  +b/r) -2dt  2 (3.2) 

In principle it is o f  course a mat ter  of  indifference whether  one generates 
solutions of  the Brans -Dicke  equations f rom (3.1) or f rom (3.2), or, for that  
matter ,  f rom any other  static metric derived f rom them by t ransformat ions  
o f  coordinates,  unless one imposes a coordinate  condit ion upon them. In 
par t icular  the Brans -Dicke  solutions will immediately refer to isotropic 
coordinates  only if one starts f rom (3.2). In fact, according to (1.8) they are 

gal = g22/r2 = g33/r2 s in2 ~ = - (1  - b/r)Za(1 + b/r)  4-2~ 

g44 = (1 - b/r):~(1 + b/r) -2~, q~ = (1 - b/r) ~ (1 + b/r) -~ (3.3) 

Inspect ion shows that  this is substantial ly form I of  the solution as given in 
the Appendix  of  Brans (1962), granted the identifications 

~: = 1 - ( C +  1)/a, -q = 1/2~, g = C/A (3.4) 
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[Brans' constants e ~o, e~o, ~o can be made to appear by making the changes 
of scale r --> re t~o, t --> te ~~ of the coordinates r, t and writing q~/~0 in place 
of qS; then also b = Be~0.] (3.4) is obviously consistent with (2.14), whilst 
(2. t 6) requires that 

~2 = 1 + c + (t  + ~ , )  c 2 (3.5)  

and this equation serves as the definition of k in Brans' work. (The other 
forms of solution can be obtained from form 1--by carrying out limiting 
processes in the case of forms III and IV--but  this is not the place to spell 
this out in detail.) 

(b) Something new is obtained from the axially symmetric solutions of 
the Einstein equations due to Weyl and Levi-Civita (Robertson & Noonan, 
1968). With r : :  x ~, z:-= x 2, 0~:= x 3, t := x 4 they are 

ds 2 = -e-2r 2 + dz 2) + r2 d~ 2] + ea~ dt 2 (3.6) 

where ~b is any solution of the two-dimensional flat-space Laplace equation 

r-l(r~,~).l + ~,22 = 0 (3.7) 

and 7' is obtained from the equation 

dy = r [@,,)2 _ @,2)2] dr + 2r~,~ (L2 dz (3.8) 

the integrability conditions on which are satisfied as a consequence of the 
field equations. The induced family of solutions of the Brans-Dicke 
equations is 

as  2 = __e-2(r/F {)~ [e2y(dr 2 @ d z  2) q- r2dez 2] q- e2qt~ dt  2 

q~ = e g~ (3.9) 

subject to r /and ~ satisfying the condition (2.16). 

4. Flat  Space as S tar t ing  Point  

Einstein's vacuum equations are trivially satisfied when the V4 is flat. It is 
worth noting that, starting from a galilean metric, one can therefore 
generate solutions of the Brans-Dicke equations without formally ever 
solving any equations at all. A simple example will illustrate this remark. 

Let 
ds 2 = - d 2 2  - dy 2 - dz 2 4- d[ 2 (4.1) 

to begin with. The coordinate transformation 

2 = xcosh t, y = y, 5 = z, [ =  xsinh t (4.2) 

changes this into 
(Is 2 = - d x  2 - ~]v 2 - d z  2 ~- x2 dt 2 (4.3) 

This then induces the following family of solutions of the Brans-Dicke 
equations: 

NS 2 = - x 2 ~ ( d x  2 q- d y  2 -> d z  x) -~- xZ ~  d t  z, q5 = X c- (4.4) 
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More generM solutions may be obtained in this way. It  is best first to 
generate solutions of  the Einstein equations by a succession of reciprocal 
transformations (Buchdahl, 1954) and appropriately chosen coordinate 
transformations, and then to write down the induced family of  solutions of  
the Brans-Dicke equations. 

Finally it should be remarked that instead of considering metrics which 
are static in the sense of  (1.7), one may throughout contemplate metrics 
which are 'static with respect to the coordinate x s', meaning that gk~.~ = 0 
and gks = 0 (k ~ s). The work of Section 2 remains essentially unchanged: 
one need only write gs~ in place of  g44 and take the range of the indices a, b, c 
to exclude the value s. By way of example, take the obviously flat metric 

ds 2 = - l Z  d x  2 _ dy  2 _ dz  2 + d t  2 

in p]ace of (4.3). This is static with respect to x, and it therefore induces the 
solution 

ds 2 = - t Z ' d x  2 - tZg(dy 2 + dz  2) + tZg d t  2, ~ = t ;  (4.5) 

of  t1~e Brans-Dicke equations. In any physical interpretation the fields are, 
however, now time-dependent. 
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